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Abstract The clone size distribution of the human naive T-cell receptor (TCR) repertoire is an

important determinant of adaptive immunity. We estimated the abundance of TCR sequences in

samples of naive T cells from blood using an accurate quantitative sequencing protocol. We

observe most TCR sequences only once, consistent with the enormous diversity of the repertoire.

However, a substantial number of sequences were observed multiple times. We detect abundant

TCR sequences even after exclusion of methodological confounders such as sort contamination,

and multiple mRNA sampling from the same cell. By combining experimental data with predictions

from models we describe two mechanisms contributing to TCR sequence abundance. TCRa

abundant sequences can be primarily attributed to many identical recombination events in different

cells, while abundant TCRb sequences are primarily derived from large clones, which make up a

small percentage of the naive repertoire, and could be established early in the development of the

T-cell repertoire.

Introduction
The human adaptive immune system employs a vast number (> 1011 [Clark et al., 1999]) of T lym-

phocytes, to detect and control pathogens. Most T cells express a single T-cell receptor (TCR) vari-

ant, which binds antigen in the form of a short peptide presented by the Major Histocompatibility

Complex (pMHC) (Davis and Bjorkman, 1988). The TCR has to be specific to distinguish between

self- and non-self-pMHC, but due to the large number of possible foreign antigens (> 209) a specific

TCR is nevertheless expected to bind many different pMHC (i.e., cross-reactivity) (Mason, 1998;

Sewell, 2012). The actual diversity of the TCR repertoire is unknown, but with improved sequencing

techniques, estimates have risen by orders of magnitude from 106 (Arstila et al., 1999),

107 (Robins et al., 2009), to over 108 (Qi et al., 2014).

Generation of ab TCRs occurs in the thymus, where thymocytes randomly rearrange and impre-

cisely recombine gene segments to create a complete receptor (Nikolich-Zugich et al., 2004). This

heterodimer is generated by random recombination of Variable, Diversity, and Joining (V, D and J)

segments for TCRb, and V and J segments for TCRa sequences (Davis and Bjorkman, 1988). Most

variability arises due to random nucleotide insertions and deletions where the segments are joined

(Murugan et al., 2012). Recent estimates of the potential number of TCRs produced by this V(D)J-

recombination process range from > 1020 (Zarnitsyna et al., 2013) to 1061 (Mora and Walczak,

2019), which vastly outnumbers the number of distinct TCRs present in a human body. After genera-

tion of the TCR, T cells undergo positive and negative selection, which selects those T cells that

have sufficient, but not too high, affinity for any self-pMHC (McDonald et al., 2015). About 3–5% of
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thymocytes survive selection (Merkenschlager et al., 1997) and enter the periphery as T cells that

have not yet encountered foreign cognate antigen, that is as naive T cells.

The thymic output of new T cells decreases because of thymic involution, making peripheral divi-

sion of existing cells the main source of naive T cells from early adulthood onwards in humans

(den Braber et al., 2012; Kumar et al., 2018). In the periphery, naive T cells compete for cytokines,

such as IL-7, and need to interact with self-pMHC to survive (Tanchot et al., 1997; Takada and

Jameson, 2009; Jenkins et al., 2010). Competition between T-cell specificities may reduce reper-

toire diversity when cells with some TCRs outcompete others (De Boer and Perelson, 1994), result-

ing in differences in TCR frequencies, and heterogeneous naive T-cell clone sizes. Experimental

evidence for large heterogeneity in division and survival rates within the naive T-cell pool has been

shown in mice (Hogan et al., 2015; Rane et al., 2018; Reynaldi et al., 2019). Such experiments are

not feasible in humans, but mathematical modelling has been used to assess how fitness differences

between T-cell clones may affect the frequency of clones in the naive repertoire (Stirk et al., 2008;

Stirk et al., 2010; Hapuarachchi et al., 2013; Lythe et al., 2016; Desponds et al., 2016;

Desponds et al., 2017; Dowling and Hodgkin, 2009; Johnson et al., 2012).

Measuring the distribution of TCRa and TCRb sequences in samples of naive T cells can inform us

about the clone-size distribution of the naive T-cell repertoire. Previous studies have reported large

heterogeneity in the frequency of TCRb sequences in naive repertoires from mice (Quigley et al.,

2010) and humans (Robins et al., 2009; Venturi et al., 2011; Qi et al., 2014; Pogorelyy et al.,

2017). One important factor shaping the abundance of TCR sequences is their likelihood to be pro-

duced during VDJ-recombination. Rearrangements with less N-insertions, for example, tend to be

more commonly observed (Robins et al., 2009; Robins et al., 2010; Venturi et al., 2011;

Pogorelyy et al., 2017). To study this in more detail, the Mora and Walczak groups developed

probabilistic models that predict the generation probability of any specific TCRa or TCRb sequence

(Murugan et al., 2012; Marcou et al., 2018). They showed that these sequences (s) differ by several

orders of magnitude in their probability PðsÞ of being produced by V(D)J recombination in the thy-

mus. Differential generation probabilities do not only impact the abundance of TCRa and TCRb

sequences within an individual, but also contribute to sharing among individuals (Robins et al.,

2010; Quigley et al., 2010; Venturi et al., 2011; Qi et al., 2014; Pogorelyy et al., 2017;

Elhanati et al., 2018). Hence, it is essential to take the likelihood of generating a sequence into

account when interpreting sequencing data of immune repertoires.

In this study, we characterize the frequency distribution of TCRa and TCRb sequences in the naive

repertoire. We analyze published and new experimental data on both the TCR a and b chain, and

combine a quantitative unique molecular identifier (UMI)-based TCR sequencing pipeline with math-

ematical modeling to consider carefully the contributions of different mechanisms that may lead to

observed abundant TCRa and TCRb sequences in the naive repertoire. Such mechanisms include

experimental confounders, such as the purity of the cell populations and repeated sampling of

mRNA from the same cell, and diverse biological processes including distinguishing carefully

between repeat generation of identical sequences in different cells, and large naive T-cell clones.

We show that all these processes are likely to contribute to the observed abundance profile of TCR

sequences in samples of naive repertoires. In particular, even after all other mechanisms are

accounted for, we find evidence for naive T-cell clone size heterogeneity. Specifically, the results are

compatible with an underlying power-law distribution of naive T-cell clone sizes (Desponds et al.,

2016), or more generally by models in which 1–5% of naive T cells represent large clones of 105 -

106 cells. Preferential expansion of some clonotypes, perhaps those occurring early in development

of adaptive immunity, therefore plays an important role in shaping the naive T-cell repertoire.

Results
We analysed the frequency distribution of TCR sequences in the naive T-cell compartment, using

TCRa and TCRb sequences published in Oakes et al. (2017). In brief, peripheral blood mononuclear

cells (PBMCs) from two adult volunteers were FACS-sorted into naive (CD27+CD45RAhigh) and vari-

ous memory CD4+ and CD8+ populations. TCRa and TCRb mRNA was reverse transcribed to cDNA

molecules to which unique molecular identifiers (UMIs) were attached, followed by PCR-amplification

and high-throughput sequencing (HTS) on an Illumina MiSeq platform. We refer to this as experi-

ment 1 below (for further details see Section ’Sequence analysis’). Sequence reads were processed
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using a customized version of the Decombinator pipeline (Thomas et al., 2013), with an improved

error correction on UMIs to more reliably estimate the frequency of nucleotide TCRa and TCRb

sequences in the samples (see Section ’Sequence analysis’). Additionally, we used the RTCR pipeline

(Gerritsen et al., 2016) for comparison (Section ’Sequence analysis’). The different memory popula-

tions were combined for the purpose of the analysis presented below.

Abundant TCR sequences are frequently shared between naive and
memory populations, and are enriched for high V(D)J recombination
probabilities
Within the naive T-cell repertoires, the vast majority of TCRa and TCRb sequences were observed

only once, and most frequencies fall within the range from 1 to 5 (Figure 1A). As expected, in the

memory repertoires, which contain clonally expanded T cells, much more abundant sequences were

present, with a substantial number of a and b chains observed more than 1000 times (Figure 1A).

The few sequences observed with a frequency higher than five in the naive samples were shared in

most cases (94.6%) with the corresponding memory subset from the same individual. We examined

whether this overlap might arise from imperfect sorting of the T-cell populations, despite the tight

non-overlapping sort gates applied (see [Oakes et al., 2017]). A prediction of such sorting contami-

nation is that the abundance of the shared TCR sequences in the naive and memory repertoires

should be proportional. Such a linear relationship could be observed clearly for CD8+ TCRa and

TCRb sequences (Figure 1A), especially for memory abundances greater than 1000. Correlation

measurements suggested that the amount of contamination for CD8+ T cells was 0.1 - 1.5%. As

expected, no correlation was observed between the abundance of TCR sequences shared between

naive and memory populations of different donors (Figure 1B).

We next examined the relationship between V(D)J recombination probabilities and the overlap

between naive and memory repertoires. Using the V(D)J-recombination model of Marcou et al.

(2018), we predicted the generation probabilities PðsÞ of all TCRa and TCRb sequences in our data-

sets. As expected, we observed a wide range of PðsÞ values, which were several orders of magni-

tude higher for TCRa sequences than TCRb, due to additional recombination of the D segment. The

generation probability distributions of sequences derived from naive and memory T cells were indis-

tinguishable (Figure 1C, blue and red, respectively). Thus, our data provide no evidence that the V

(D)J-recombination process preferentially produces sequences that are more likely to enter the

memory pool during an immune response. However, TCRa sequences shared between memory and

the corresponding naive samples, were strikingly enriched for high PðsÞ (Figure 1C, green). This

enrichment is much less evident for TCRb sequences. The enrichment for sequences with high PðsÞ

in the population of shared memory/naive TCRa is not compatible with overlap derived from con-

tamination during cell sorting, but rather suggests that the sharing may also arise from T cells which

use the same TCRa because of identical VJ recombination events in different T cells. It is important

to stress that, since such different T cells are highly unlikely to also share TCRb sequences, the clono-

type, and hence specificity of the T cells in the naive and memory compartments may well be differ-

ent, despite sharing TCRa sequences.

As a control, we also analyzed overlap between the naive sample from one volunteer and the

memory sample from the other. In this case, sort contamination of naive repertoires by memory T

cells is excluded and a shared sequence can only result from independent identical recombination

events, from distinct T-cell clones. For CD4+ cells, we find that the number of TCRa sequences

shared between naive and memory is similar between and within volunteers, and that the PðsÞ distri-

bution is nearly identical (Figure 1C, purple). For CD8+ cells, the number of sequences shared within

an individual is somewhat larger than between individuals, compatible with some degree of sort con-

tamination in this population as discussed above. The small number of TCRb sequences shared

between individuals also had a relatively high PðsÞ, although considerably smaller than for TCRa.

In summary, although contamination with abundant memory T cells may make a small contribu-

tion to the TCR sequences which are found in both naive and memory for CD8+ cells, multiple identi-

cal recombinations arising from high PðsÞ values is the dominant mechanism leading to overlap in

the TCRa repertoires. Nevertheless, in order to stringently exclude any possible contribution of con-

tamination, we included an analysis which excluded all the shared sequences from the further investi-

gations of the relationship between TCR sequence abundance and PðsÞ (Figure 1D).
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Figure 1. Frequencies and generation probabilities of TCRa and TCRb sequences from memory and naive T cells.

(A) Frequency of TCRa and TCRb sequences in naive versus total frequency in memory repertoires sampled from

the same volunteer. Symbol sizes represent number of sequences with these frequencies and colour represents

their median generation probability PðsÞ, as determined using IGoR (Marcou et al., 2018). The c value is the

slope of linear regression on sequences with a memory count > 100 and indicates the estimated probability that a

given TCR sequence from a memory cell appears in the naive sample. (B) As A., but comparing frequency in naive

sample from one volunteer with frequency in memory from the other volunteer. (C) Distributions of generation

probabilities (log10) for TCR a and b sequences from CD4+ and CD8+ from two volunteers. Blue dashed: naive,

red solid: memory, green long-dashed: overlap (i.e., sequences observed in both naive and memory within a

volunteer), purple dashed: overlap between volunteers (i.e., sequences observed in the naive subset of Volunteer 1

and a memory subset of Volunteer 2, or vice versa). The total number of sequences for each group are indicated in

corresponding colors. (D) The median PðsÞ is shown for each observed frequency class (log2 bins) of sequences

exclusively observed in naive (blue squares) or memory T-cell (red diamonds) samples. PðsÞ of the overlapping

chains is shown in green for reference (irrespective of frequency). Symbol sizes indicate numbers of sequences for

each frequency class. Error bars represent the 25% and 75% quartiles, solid lines indicate linear regression

between observed frequency and PðsÞ, weighted by the number of sequences with that frequency.

The online version of this article includes the following source data and figure supplement(s) for figure 1:

Source data 1. Memory and naive counts in Experiment 1.

Figure supplement 1. TCRa and TCRb sequences abundant in naive tend to have less N-insertions.

Figure supplement 2. Similar to Figure 1, but for HTS data processed with RTCR.
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The abundances of sequences in all naive repertoires were correlated to PðsÞ (Figure 1D, blue).

The median PðsÞ of the a chains that were observed at least three times was about 154-fold higher

than for those that have only been observed once (p<10�15, Wilcoxon test). The enrichment for high

PðsÞ in more abundant TCR sequences was weaker for TCRb (~2.5-fold, p<0:01, Wilcoxon test), but

still stronger than for memory subsets (1.65- and 1.03-fold for TCRa and TCRb, respectively, p<10�15

and p ¼ 0:27). In line with this, the number of N-additions tended to be lower for TCRa and TCRb

sequences abundant in the naive samples (Figure 1—figure supplement 1). These correlations sug-

gest that multiple identical recombination events which occur during formation of the naive T-cell

repertoire in the thymus due to high generation probabilities, contribute to the observation of abun-

dant TCR sequences. This is especially evident for TCRa, where the probabilities of producing a

given sequence are higher because of the absence of a D region. However, abundant TCR sequen-

ces with low PðsÞ are also observed, especially for TCRb, leaving open the possibility of large naive

T-cell clones.

Frequently observed TCR sequences cannot be attributed only to
multiple RNA molecules per cell
T cells contain on average in the order of 100 molecules of TCRa and 300 molecules of TCRb mRNA

(Oakes et al., 2017). Because the TCR sequencing pipeline is not 100% efficient, only a small pro-

portion of these molecules are actually sequenced, but the possibility remains that TCR sequences

observed multiple times may be due to repeat sampling from the same cell. Because the variance of

this number remains undetermined, it is difficult to computationally determine the contribution of

this multiple sampling to the data. Instead, we performed an additional experiment (referred to as

experiment 2) in which we sorted naive T cells from an additional volunteer, and split the naive T

cells into three subsamples before mRNA extraction. We then carried out library preparations and

sequenced TCRa and TCRb sequences from each subsample independently. In this experiment,

sequences observed in more than one subsample must have been derived from different cells, and

cannot be a result of sequencing multiple mRNA molecules from a single cell. Repeated sequences

must therefore derive from different cells, and represent abundant sequences.

In total 16913 (3.4%) TCRa sequences, and 5744 (0.61%) TCRb sequences, were observed in

more than one subsample (Figure 2A), confirming the existence of a substantial number of frequent

TCR a and b chains in the full naive repertoire. In order to exclude any contribution from sort con-

tamination, we also plot the data after removing all TCR sequences found in both memory and naive

repertoires (Figure 2A, grey bars). A substantial number of a and b chains were still found in multi-

ple subsamples. In order to estimate the impact of multiple sampling on the observed abundances

we randomly permuted the TCR sequences between subsamples, and reanalyzed the distributions

(see detailed explanation in Section ’Subsampling to exclude inflated abundance through multiple

RNA contributions by single cells’). We estimated that ~25% of a and > 75% of b chains with an

abundance of greater than 1 in an individual sample may arise from sampling multiple RNA mole-

cules from single cells. The impact is strongest on TCR sequences observed twice (see Figure 2—fig-

ure supplement 1). Thus multiple mRNA sampling is an important confounder of estimating TCR

sequence abundances in individual repertoires, especially for TCRb.

Having ruled out the contribution of multiple mRNA sampling experimentally, we examined the

relationship between TCR sequence abundance and PðsÞ in this new data set. The TCRa chains

present in more than one naive subsample are dominated by sequences with high PðsÞ. The median

generation probability of TCRa sequences observed in two and three subsamples was 56- and 165-

fold higher, respectively, than those observed only once (Figure 2B). The relationship for TCRb

sequences was remarkably different, however. While TCRb sequences observed in two subsamples

are mildly enriched for high generation probabilities, those observed in three subsamples have

hardly any enrichment for high PðsÞ (Figure 2B). Instead, their generation probabilities tend to be

lower than those of the sequences observed in two subsamples, and more similar to the generation

probabilities of TCRb sequences seen in only one subsample. We obtained similar results when mea-

suring the number of N-additions and VJ-deletions in the rearrangements: abundant a chains (with

incidence 2 or 3) tend be closer to germline rearrangements, while this was only the case for b chains

with incidence 2, and not for the most abundant b chains with incidence 3 (Figure 2C and D). These

trends were observed both with and without removing the sequences that were also observed in
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memory (Figure 2, grey versus colored bars) and when processing the data with RTCR (Figure 2—

figure supplement 2).

We further explored whether the more abundant sequences were also more ‘public’ (found in the

repertoires of multiple individuals), which would be predicted if they are more likely products of V(D)

J-recombination. We measured the degree of sharing between those TCR sequences observed in 1,

2, or 3 naive subsamples, and the TCRa and TCRb repertoires of unfractionated blood samples col-

lected from 28 healthy donors (details in Section ’Sharing of TCRa and TCRb sequences’). Both

TCRa and TCRb sequences observed in two or three subsamples were found to be significantly

more often shared with this independent cohort than those observed once (Figure 2—figure sup-

plement 3A). The most frequent TCRa sequences, which were seen in three subsamples, showed

the highest sharing degree, consistent with their strongest enrichment for high generation probabili-

ties. The relatively small number of most frequent TCRb sequences (i.e., those observed in three
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Figure 2. Subsampling naive T cells confirms that frequently observed TCRa but not TCRb sequences have high

generation probabilities. (A) The number of TCRa and TCRb sequences observed in 1, 2 or 3 subsamples

(experiment 2). The grey background bars show the results after removing all sequences that were also observed

in the corresponding memory samples. (B) Generation probabilities PðsÞ (log10) of TCRa and TCRb sequences

observed in 1, 2 or 3 subsamples. (C) Minimal number of N-additions of TCRa and TCRb sequences observed in 1,

2 or 3 subsamples. (D) Number of V- and J-deletions of TCRa and TCRb sequences observed in 1, 2 or 3

subsamples. The plot shows median (black horizontal line), interquartile range (filled bar) and the range from the

bar up to 1.5 times the interquartile range (black vertical range, outliers not shown).

The online version of this article includes the following source data and figure supplement(s) for figure 2:

Source data 1. Naive TCRa and TCRb abundance in the subsamples of Experiment 2.

Figure supplement 1. Permutation of subsampling experiment.

Figure supplement 2. Similar to Figure 2, but for HTS data processed with RTCR.

Figure supplement 3. Observed frequency predicts sharing for TCRa but not TCRb sequences.
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subsamples), did not show increased inter-individual sharing compared to the TCRb sequences

observed in two subsamples. Additional comparison with publicly available TCRb data from a large

cohort (Emerson et al., 2017) (see Section ’Sharing of TCRa and TCRb sequences’) showed that the

most frequently observed b chains, which were observed in all three subsets in experiment 2, were

less public than sequences observed in two subsamples (Figure 2—figure supplement 3B). The

seemingly paradoxical finding that the most abundant TCRb sequences (observed in all three sub-

samples) have lower PðsÞ, and are less public than those found twice, is explored in more detail

below.

Computational models of TCR repertoire generation suggest the
presence of a small proportion of large T-cell clones in the naive
repertoire
In order to more rigorously test our ideas about the frequency distribution of clonotypes in the naive

T-cell repertoire, we explored a number of possible computational models of repertoire generation

and sampling, and compared model predictions with the experimental data discussed above. The

first simplest scenario we considered was a neutral model of repertoire formation, similar to Hub-

bell’s Neutral Community Model (Hubbell, 2001; Figure 3A, details in Section ’Neutral model for

dynamics of naive T cells’). The model assumes that there is no selective advantage of one TCR over

another, and therefore the TCR of a naive T cell does not affect its lifespan or division rate. Consider

a pool of N naive T cells, from which cells are removed by cell death or by priming with antigen,

leading to differentiation into a memory population. A fraction q of these cells is replaced by thymic

production of new clones and the remaining fraction 1 - q gets replaced by division of cells present

in the pool. When simulating the naive T-cell pool with this model, the clone-size distribution

approaches a ‘steady state’ (not shown). We use this steady-state distribution, for which we have an

analytical expression (Section ’Neutral model for dynamics of naive T cells’) to predict the size of

clones in the naive T-cell pool. As the contribution of thymic output decreases during aging

(Steinmann et al., 1985), we evaluated the model for a wide range of values for q. The clone-size

distribution which emerges from the neutral model is approximately geometric for clone sizes larger

than the introduction size c (Figure 3B, Section ’Neutral model for dynamics of naive T cells’). We

compared this basic model to models in which we impose other distributions on the underlying clo-

notype abundances (model details in Section ’Clone-size distributions of the naive T-cell pools’). We

specifically focused on heavy-tailed distributions such as log-normal and power-law distributions,
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Figure 3. Schematic representation of the neutral model and various clone-size distributions. (A) Schematic

representation of the dynamics of the neutral model for the naive T-cell pool. Each event starts with removal of

one randomly selected cell from the pool, followed by peripheral division of another cell (with probability 1- q), or

a chance for thymic production (probability q). After c of these thymus events, a clone of c cells is generated and

added to the peripheral pool, reflecting the divisions of T cells before entering the periphery. (B) Schematic

representations of the various clone-size distributions that were used to predict the naive repertoire. The green,

orange and blue colored lines depict three parameter choices for each distribution, resulting in a low, medium

and high mean clone size, respectively.
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which have previously been associated with T-cell repertoires (Desponds et al., 2016). The shape of

each of these distributions is controlled by a single parameter (as shown in Figure 3B), allowing us

to compare distributions with different degrees of heterogeneity. In all cases, we normalized the

clone-size distribution such that the total number of cells N is constant. Since we had separate exper-

imental data for CD4+ and CD8+ cells, we considered CD4+ and CD8+ cells separately, setting

NðCD4Þ ¼ 7:5�10
10, and NðCD8Þ ¼ 2:5�10

10.

From all model clone-size distributions we simulate three subsamples, so as to compare with the

data from the second experiment described above. Each sampled TCR is assigned a TCRa and a

TCRb sequence that were generated with IGoR (Marcou et al., 2018). Previous studies showed that

a and b chains with higher generation probabilities tend to have a higher probability to survive

selection (Elhanati et al., 2014). Therefore, we train a simple PðsÞ-dependent selection model on

the data from the single naive T-cell samples shown in Figure 1. First, we assume that productively

rearranged chains have an overall 1/3 probability to survive thymic selection. Then we bias the prob-

ability for bins of sequences based on their PðsÞ, such that the resulting set of a and b chains has

the same generation probability distribution as in the experimental repertoire data (Section ’In silico

samples from modelled clone-size distributions’). The models also incorporate the expected number

of cells that contribute at least one mRNA molecule. This parameter is also learnt from the data, by

setting the number of cells that contributed mRNA such that the predicted diversity of a subsample

matches the observed diversity (Section ’In silico samples from modelled clone-size distributions’).

Taken together, the subsamples we take from the various model clone-size distributions are such

that they match the generation probabilities and diversity of the experimental subsamples as closely

as possible. We compare the number and median PðsÞ of the TCR sequences that are predicted to

occur in only one, in two or in three subsamples, with the equivalent experimental data from experi-

ment two above (Figure 4).

We consider first the neutral model (Figure 4A and C). For the a chain, a wide range of thymic

output rates predict the number of chains occurring in 1, 2 and 3 subsamples reasonably well

(Figure 4A). The model does not predict the median PðsÞ of TCRa found in 2 and 3 subsamples

well, although qualitatively the model does predict the increasing PðsÞ with increasing abundance

(Figure 4C). For the b chains, there is no range of thymic output rates for which the model correctly

predicts the number of sequences observed in 2 and 3 subsamples. Moreover, the observation that

incidence two chains have higher PðsÞ than incidence three chains was not predicted for any value

of q (Figure 4C). Thus, although the neutral model captures some features of the observed TCRa

sequence abundances, it cannot account for observed TCRb distributions. A similarly poor match

between observed and predicted data is observed for log-normal clonotype model (Figure 3B) dis-

tributions (not shown).

In contrast, there is a much better fit between observed and predicted data is obtained when the

model clonotype frequencies are modelled by a power-law distribution (Figure 4B and D). Like the

distributions discussed above, in the parameter range where clone-size heterogeneity is limited (i.e.

a steep slope), a power-law distribution predicts both the number of TCRa sequences found in 2

and 3 samples, and their larger median PðsÞ. The number of TCRb sequences is also predicted well

if the slope is close to 2.3 (Figure 4B). Remarkably, for this slope the median PðsÞ of TCRb sequen-

ces found in two samples is higher than the median PðsÞ of TCRb sequences found in three samples

(Figure 4D). Intuitively, we can understand this observation as reflecting the properties of power-law

distributions, combined with the lower generation probabilities of TCRb. Identical TCRb recombina-

tions occur frequently enough to make a detectable contribution to the TCR sequences observed in

two samples, but not to those detected in three samples. Therefore, a significant proportion of

TCRb sequences observed twice are in fact derived from two or more different naive T-cell clones. In

contrast, TCR sequences observed three times (or more) must be derived from large naive T-cell

clones. Abundant TCRa sequences arise both from large clones and summation of identical TCRa

from multiple smaller clones, but due to their higher generation probabilities, the latter dominates

the PðsÞ for TCRa sequences found twice and three times. Finally, we note that although TCR

sequence abundance in the single samples from experiment one is likely to incorporate multiple

mRNA from single cells, the power-law distribution also predicts abundances in the single samples

of experiment one reasonably well (Figure 4—figure supplement 1).

The vast majority of TCR sequences in samples of naive T cells are observed only once, and hence

we cannot infer anything about their frequency in the whole repertoire, except that it is likely to be
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Figure 4. Predictions of the neutral, power-law and two-population model compared with HTS data. (A) Number

of TCRa and TCRb sequences which are predicted to be shared between 1 (red), 2 (blue) and 3 (green)

subsamples as a function of the thymic output rate q for the neutral model. (B) As A., but as a function of the slope

of the power-law distribution. (C) The median generation probability PðsÞ of TCRa and TCRb sequences

predicted by the neutral model. Dashed lines depict the mean of 10 model prediction repeats, shaded area

indicates the standard deviation, solid lines show observed results in HTS data. (D) As C., but as a function of the

slope of the power-law distribution. (E) Graphical representation of parameter sweep results for prediction of

CD4+ and CD8+ repertoires from ab clone-size distributions following a mixture model consisting of singleton

clones and a small fraction of large clones. The color represents goodness of fit, with dark green being better

predictions for number of sequences per incidence in samples. Empty circles indicate parameter combinations

resulting in qualitatively correctly predicted PðsÞ, that is 3 > 2 > 1 for TCRa and 2 > 1 for TCRb and 2 > 3 for

TCRb. Filled circles indicate parameter combinations with the smallest distance to the incidence data and a

correct PðsÞ prediction.

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Prediction of power-law model (exponent 2.3) for single sample data.

Figure supplement 2. Similar to Figure 4, but for HTS data from which TCRa and TCRb sequences were removed

that also occurred in the corresponding memory samples.

Figure supplement 3. Similar to Figure 4, but for HTS data processed with RTCR.
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below a given abundance threshold. Therefore we explored whether a more generalised model,

which does not make any assumptions about the distribution of the low abundance T cells, would

predict our experimental data as well as the power-law model. In this simple mixture model we gen-

erate a population in which the majority of cells are present only once, and a minority are present

many times. We scanned the parameter space of this model, varying both the proportion of cells in

each population, and the size of clones in the larger population. The prediction of the model for

each parameter pair was compared to the experimental data from experiment 2, both for the num-

ber of TCRs (combining a and b sequences) observed in one, two or three subsamples, and for the

median PðsÞ of these TCR sequences. The best agreement between model and data was observed

when 1–5% of the cells were derived from abundant T-cell clones (between 105 and 106 cells in the

whole repertoire) (Figure 4E).

Abundant T-cell sequences are enriched for zero insertions and for
antigen-association
In human prenatal thymocytes, the enzyme terminal deoxynucleotidyl transferase (TdT) is not

expressed, leading to the production of TCR sequences with zero insertions of N-nucleotides.

Pogorelyy and colleagues showed that enrichment of zero insertion TCR sequences can be used to

detect fetal clones even in adults, and that their contribution to the overall repertoire decays slowly

with age (Pogorelyy et al., 2017). Interestingly, the proportion of zero-insertion sequences was

strongly enhanced in those sequences observed more than once in the three subsamples examined

in experiment 2 (Figure 5A). The interpretation of this finding is not straightforward, since zero-

insertion TCR sequences have higher median generation probabilities, and this is also a property of

abundant sequences as discussed above. Nevertheless, the data are compatible with a model in

which the large clones observed in the repertoire are generated preferentially during early prenatal

development of the naive T-cell repertoire.

We next examined if the abundant sequences in our data showed characteristics of semi-invariant

NKT and MAIT cell populations. Classical NKT cells are characterized by an invariant TRAV24-

TRAJ18 a chain and b chains with TRBV11 (Dellabona et al., 1994). MAIT cells are enriched for

TCRa rearrangements of TRAV1-2 with TRAJ33, TRAJ12 and TRAJ20 (Reantragoon et al., 2013),

and TCRb sequences predominantly using TRBV20 and TRBV6 (Lepore et al., 2014). Since our HTS

data does not contain information on ab pairing, we studied both chains separately. A substantial

fraction of the observed TCRb sequences matches the characteristics of MAIT cells, and to a lesser

extent NKT cells (Figure 5B and C). For both cell types, however, this fraction does not show a clear

relation to incidence, and does not suggest enrichment for MAIT or NKT cells among abundant

sequences. The most abundant TCRa sequences are enriched for NKT sequences, but these still

account for only a small fraction of the total (0.3% and 1.7% for CD4+ and CD8+, respectively,

Figure 5B). Hence, we conclude that only a small fraction of the abundant sequences are derived

from clones with a MAIT or NKT cell phenotype.

Finally we analysed whether the abundant TCR sequences in the naive population could be

detected in a database of TCR sequences with known antigen specificity (Shugay et al., 2018). Inter-

estingly, there was a striking enrichment of TCR sequences with known antigen-specific annotation

within the high abundance TCRa sequences observed in more than one subsample from experiment

2, and to a lesser extent for TCRb sequences (Figure 5C). Interpretation is again not straightforward,

because the high generation probabilities of the abundantly observed chains could lead to these

sequences being over-represented in the database (ascertainment bias). Additionally, the observa-

tion may also reflect the fact that the naive T-cell populations we sequenced contained some anti-

gen-experienced T cells with a naive phenotype (Pulko et al., 2016). Finally, the observation is also

compatible with the hypothesis that TCR recombination has evolved to preferentially generate TCRs

specific to common pathogens like CMV or EBV as discussed in Thomas and Crawford (2019).

Discussion
The diversity and clone size distribution of the naive T-cell repertoire has been the subject of consid-

erable debate, fueled by the difficulty of obtaining more than a very small sample of the total reper-

toire, and by a variety of other technical considerations which we address in this study. We use a

quantitative UMI-based sequencing protocol, and careful error correction to analyse the naive and
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memory repertoires from three healthy human volunteers. We convincingly demonstrate that a small

proportion of the TCR sequences are present more than once in a sample of naive T cells from

blood, corresponding to expected frequencies greater than 1 in 105. This number of abundant TCRa

sequences is higher than the number of abundant TCRb sequences.

We carefully considered different mechanisms that could give rise to these abundant TCR

sequences. We examined the contribution of potential contamination of the naive population with

abundant T cells from the memory compartment during the sorting process, but the extent of such

contamination was small (for CD8+ cells) or not detectable (for CD4+ cells). Furthermore, exclusion

of all TCR sequences which occurred in both memory and naive populations did not alter the subse-

quent conclusions of the analysis. We also considered the possibility that abundant TCR sequences

were observed due to sampling multiple mRNA molecules from the same cell. In order to exclude

this possibility, we carried out an experiment where we divided up a sample of sorted naive T cells

into three subsamples prior to lysis, and sequencing. In this experimental paradigm, TCR sequences

found in more than one subsample must arise from different T cells. We observed that repeat sam-

pling of mRNA from the same T cell did indeed occur, and might account for as much as 75% of the

high abundance TCRb sequences (for which there are more mRNA molecules per cell, [Oakes et al.,
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Figure 5. Characterization of abundant TCRa and TCRb sequences. (A) The fraction of rearrangements with zero

minimal N-additions for sequences observed in 1, 2 or 3 naive subsamples. Data are shown without (colored bars)

and with cleaning of overlap with memory (grey bars). (B) Fraction of TCRa and TCRb sequences with V(J) usage

characteristic of NKT cells (TRAV24-TRAJ18 for TCRa; TRBV11 for TCRb). (C) Fraction of TCRa and TCRb

sequences with V(J) usage characteristic of MAIT cells (TRAV1-2 with TRAJ33, TRAJ12 or TRAJ20 for TCRa;

TRBV20 or TRBV6 for TCRb). (D) Fraction of sequences having at least one match (CDR3 amino acid sequence as

well as V and J annotation) with the VDJdb (Shugay et al., 2018).

The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. Similar to Figure 5, but for HTS data processed with RTCR.
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2017]), and as much as 25% of the TCRa sequences. However, this effect was mostly restricted to

TCR sequences observed twice, and made little contribution to TCR sequences observed three or

more times.

Having excluded methodological causes of high abundance TCR sequences, we examined two

biological mechanisms which could explain the data. The first mechanism we consider is that abun-

dant sequences derive from identical TCRa and TCRb rearrangements occurring in multiple clones.

In this model, abundance arises not from multiple sampling from the same large clone of T cells, but

from summation over many different clones of T cells, each of which share an a or b chain. The sec-

ond mechanism is that the naive repertoire clone size distribution is not uniform, but contains many

small and some large clones. We combine computational models with experimental data to provide

evidence that both mechanisms are required to explain the observed data. The first mechanism

dominates the repertoire of TCRa, and is likely to contribute to the majority of observed abundant

sequences. Interestingly, the model suggests that those TCRa which have the highest probability of

generation are produced hundreds of thousands, or even millions of times within an individual, and

must therefore be produced extremely frequently in the thymus. In contrast, the first mechanism has

a smaller impact on the TCRb repertoire, and abundant TCRb sequences are more likely to arise

from large clones in the naive repertoire.

The experimental limitations of sampling small volume of blood which contains only a tiny propor-

tion of the total repertoire has dramatic effects on the observed TCR frequency distribution. One

can use the analytical solution of the neutral model (Section ’Neutral model for dynamics of naive T

cells’) with thymic introduction size c ¼ 1 to illustrate this extreme sampling effect: F̂i »Fið
s
�Þ

i, where

F̂i and Fi are the number of clones present with i cells in the sample, and in the pool, respectively,

and s is the fraction of the repertoire that was sampled (here s ~ 10-6). Since s=� is of order 10-5 and

this is raised to the i
th power, even very large TCR clones become rare in such a sample. Because of

this, it is difficult to be definitive about the exact underlying T-cell clone frequency distribution which

gives rise to the abundant TCR sequences we observe. The data are certainly compatible with a

power-law distribution, as has been suggested previously (Desponds et al., 2016). But many distri-

butions made up of a mixture of rare clones and a small proportion (1–5%) of large clones (105 - 106)

are compatible with the data we observe.

The demonstration of large clones in the naive repertoire raises the question of what determines

the different sizes of different clonotypes. The neutral model already excludes repeated thymic pro-

duction as explanation for large clones, because the combined probability of repeated ab-clone pro-

duction is very low (Dupic et al., 2019). We confirmed that the abundant TCR sequences were not

strongly enriched for sequences characteristic of iNKT and MAIT cells (Figure 5B&C). An alternative

explanation is that the large clones may actually be antigen-experienced, but with a naive phenotype

such as memory stem T cells (Gattinoni et al., 2011; Lugli et al., 2013a; Lugli et al., 2013b;

Fuertes Marraco et al., 2015; Pulko et al., 2016). However, a number of alternative explanations

for this enrichment exist, as discussed above. Furthermore, antigen-experienced T cells should be

present in the memory populations, and large clones could still be observed even after removal of

all cells which occur in both memory and naive populations. So, although we cannot exclude that

some of the frequent TCR sequences may be derived from T cells that are not truly naive, we believe

the data argue for the existence of truly naive large clones.

We speculate that the most likely mechanism for large clones is preferential growth/survival of

some clones, presumably due to preferential selection on self-peptide/MHC (Rudd et al., 2011;

Lythe et al., 2016). Intriguingly, the abundant TCR sequences we observed were enriched for

sequences without N-insertions, a characteristic of TCRs produced prenatally (Pogorelyy et al.,

2017). The large clones may therefore be established very early in the development of T-cell adap-

tive immunity, before homeostasis of the immune system is achieved and when more rapid division

and clonal expansion may be favoured.

In conclusion, our study highlights the huge impact of subsampling on correct interpretation of

TCR repertoire data. It provides evidence for two different mechanisms which give rise to abundant

TCR sequences in the naive human repertoire. The first mechanism, driven by multiple identical

recombination events, is frequently overlooked in the analysis of T-cell repertoires, but has important

implications in interpretation of observed sharing between different T-cell subpopulations of an indi-

vidual, and between individuals (public TCR sequences). The second mechanism suggests that the
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TCR sequence plays a critical role in naive T-cell homeostasis. Further experiments will be required

to fully elucidate the cellular and molecular mechanisms which underlie the heterogeneity of the

naive T-cell repertoire.

Materials and methods

Cell sorting and sequencing
Sequence reads came from T cells extracted from blood samples of three healthy volunteers,

between 30 and 40 years old. Using CD27 and CD45RA markers, FACS-sorting was performed,

identifying naive (CD27+CD45RA+), CM (central memory, CD27+CD45RA-), EM (effector memory,

CD27-CD45RA-) and EMRA (effector memory RA, CD27-CD45RA+) cells. Barcoded TCRa and TCRb

cDNA libraries were obtained by reverse transcription of RNA molecules coding for either the a or b

chain, respectively, followed by single strand DNA ligation to attach unique molecular identifiers

(UMIs) of 12 nucleotides. These were PCR-amplified and sequenced using the Illumina MiSeq plat-

form. For full description of the sequencing procedure, we refer to Oakes et al. (2017) and

Uddin et al., 2019. The raw sequence files are available on the Sequence Read Archive (https://

www.ncbi.nlm.nih.gov/sra, RRID:SCR_004891) as experiment SRP109035.

Sequence analysis
We used the Decombinator pipeline (Thomas et al., 2013) (Version 3.1, RRID:SCR_006732) to

demultiplex, annotate, and error-correct the raw sequencing reads. Our reads contain UMIs of 12

base pairs that can be used to identify which TCRa or TCRb sequences are derived from the same

cDNA molecule. Decombinator performs error correction on sequences by collapsing those that are

similar and are associated with the same UMI. The pipeline also error corrects UMIs, collapsing those

UMIs that are associated with the same TCRa or TCRb sequence and differ from each other by 2 or

fewer sequence edits (i.e. the default barcode threshold). This error correction assumes it is unlikely

for any sequence, irrespective of its frequency, to contain two UMIs that are nearly identical, con-

cluding the UMIs are different because of PCR or sequencing errors.

We improved this by setting the barcode threshold to 0 and replacing it by an UMI error correc-

tion algorithm that takes the number of UMIs into account. Consider a TCRa or TCRb sequence sup-

ported by i different UMIs, that is with frequency i. The Hamming distance, H, between two random

UMIs of 12 base pairs can be represented by a binomial random variable, H ~B n; pð Þ, where n ¼ 12

and p ¼ 3

4
(assuming uniform frequencies of the 4 different bases). There are

i

2

� �

distinct compari-

sons between the i UMIs, and assuming that every comparison is independent, the expected distri-

bution of Hamming distances is niðhÞ ¼
i

2

� �

PðH ¼ hÞ. To determine whether two UMIs are

unexpectedly similar, we define a threshold distance that depends on the frequency of their TCRa

or TCRb sequence (i):

Da ¼maxðfd :
X

d

h¼1

niðhÞ � agÞ : (1)

Our algorithm corrects UMIs for a given sequence as follows: From d¼ 1 to d¼Da, for all UMI

pairs with H � d, add the read count of the less frequent UMI to the more frequent UMI and remove

the former. We applied this algorithm to every TCRa and TCRb sequence in our HTS data using

a = 0.05. The effects of this correction method are shown in Figure 6. After the improved correc-

tion, the distribution of Hamming Distances within and between distinct TCRa and TCRb sequences

is very similar, indicating that most erroneous UMIs have been removed. Our improved correction

decreases the estimated frequency of many sequences at low frequencies, which indicates that many

TCRa and TCRb sequences that were observed two or three times, are actually singletons for which

the UMI was mutated once or a few times. In the example given in Figure 6, the number of sequen-

ces that were observed more than once decreased with 66% by our improved correction (from

11491 to 3855), whereas the default correction estimated 9342 (only 19% reduction) of the sequen-

ces to have more than one true UMI.
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Because our analysis focuses on the naive T-cell repertoire, we combined the different memory

populations by adding the abundance of identical TCR sequences (V and J annotation as well as

CDR3 nucleotide sequence) in the corresponding CM, EM and EMRA samples. We included for anal-

ysis the sequences that were reported as functional by Decombinator and had non-zero PðsÞ. We

also processed the HTS reads with RTCR (Gerritsen et al., 2016) (Version 0.4.3). This pipeline deter-

mines a sample-based error rate and uses this rate to perform clustering on reads. Compared to

Decombinator, RTCR estimates our reads to contain more PCR and sequencing errors and therefore

tends to be more conservative in terms of reported diversity. Because RTCR reports fewer distinct

rearrangements per sample, the overlap between samples (i.e., the number of chains with incidence

2 and 3) is lower than in Decombinator output. For each of the main-text figures, a supplemental

RTCR-based version is provided. Although the quantitative results are not identical, the RTCR results

qualitatively match those of the Decombinator output, confirming that our results are not algorithm-

dependent.

Subsampling to exclude inflated abundance through multiple RNA
contributions by single cells
An important step in our analysis is the additional experiment in which the naive cells were split into

three parts before mRNA extraction. The probability for a naive cell to be sampled from the pool is

very low (< 10-5), but once a cell has been sampled it may likely contribute multiple RNA molecules.

These would then be sequenced with different UMIs, inflating the abundance we measure in a sam-

ple. Hence, we use subsampling to avoid the noise on TCRa and TCRb abundance introduced by

variable TCR expression between cells. To quantify the possible effect of single cells contributing

multiple RNA molecules, we performed a permutation test. We computationally joined the sequen-

ces observed in the three independently sequenced replicates, adding the abundance (as measured

by UMIs) in each of the three subsamples together. We then randomly assigned the UMIs of these

sequences to one of three artificial portions and again scored the incidence of all TCRa and TCRb

sequences. In this setting, RNAs contributed by single cells in a single sample, can be distributed

over multiple permuted samples. This was done 10 times for each set of sequences and we found

that permutation led to a large increase in the number of sequences occurring in multiple samples

(Figure 2—figure supplement 1A). We quantified the number of abundant chains, by counting

sequences observed in multiple samples (Supplementary file 2).

When multiple RNA molecules from a single cell can contribute a UMI (i.e., in the permuted set

and within a single sample), the number of abundant sequences is greatly overestimated. About
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Figure 6. Improved UMI correction leads to more reliable estimation of sequence frequencies. (A) Distribution of

Hamming Distances of UMIs within TCRb sequences (naive CD4+ sample of volunteer 1) before correction (red),

after default correction (blue) and after improved correction (green), in comparison with the distribution of UMIs

between sequences (black dashed). (B) Distributions of the same TCRb sequences after the different correction

strategies. Frequently observed TCRb sequences remain at the same frequency after correction, whereas the

frequency of other sequences tends to be overestimated due to mutated UMIs, which is compensated for by

improved UMI correction.
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25% of abundant a chains in this setting is actually due to inflated counts. For b chains the effect is

much larger, with over 75% of abundance due to RNA content. This difference is consistent with our

previous finding that T cells contain in the order of 300 TCRB and 100 TCRA RNA molecules per cell

(Oakes et al., 2017). Moreover, the lower PðsÞ values of b chains readily explains that there are

fewer true duplets and triplets than for a chains. Subsampling appears to be very important when

obtaining our most surprising result that high PðsÞ values are enriched for b chains with incidence 2,

but not incidence 3. After permutation, most duplets are due to RNA content (Supplementary file

2) and therefore no longer enriched for high PðsÞ (Figure 2—figure supplement 1B). These results

highlight the importance of our additional step of taking a single blood sample, dividing it into three

portions and then analyzing all three subsamples separately.

Sharing of TCRa and TCRb sequences
We sequenced TCRa and TCRb from whole blood samples taken from 28 healthy volunteers. The

study was carried out in accordance with the recommendations of the UK Research Ethics Commit-

tee with written informed consent of all subjects. All subjects gave written informed consent in

accordance with the Declaration of Helsinki. The protocol was approved by the University College

London Hospital Ethics Committee 06/Q0502/92. The raw sequence files are available on the

Sequence Read Archive (https://www.ncbi.nlm.nih.gov/sra, RRID:SCR_004891) as experiments

SRP045430 and SRP151125. In order to measure how public the individual sets of sequences were,

we measured their degree of sharing between our naive samples and these whole blood repertoires.

As shown in Figure 2, we have three sets of sequences, those with incidence 1, 2 and 3. For each

set, we measured which fraction is also found in the 28 independent whole blood samples, which

delivers 28 estimates of sharing. More precisely, we counted the number of shared TCRa and TCRb

sequences between the sets of sequences observed in two and three naive subsamples, and com-

pared these to sharing with an equal size sample of naive sequences which were only observed in

one subsample. Since the number of sequences which occurred more than once was much smaller

than the number of sequences which only occurred once, we subsampled the set of unique sequen-

ces 10 times. The results are shown as the number of shared TCRa or TCRb for each whole blood

repertoire, as a proportion of their number of sequences in the samples being tested (Figure 2—fig-

ure supplement 3A). In order to study the sharing of the b chains in our data with higher resolution,

we also analyzed overlap of the sets of sequences with the TCRb data from a large cohort of 786

people published in Emerson et al. (2017); Figure 2—figure supplement 3B.

Neutral model for dynamics of naive T cells
To model naive T-cell dynamics in the absence of peripheral selection, we developed a model that is

similar to the Neutral Community Model (NCM) of Hubbell (2001). Naive T cells, viewed through an

ecological lens, are individuals, and all naive T cells sharing the same TCRa and TCRb sequence are

part of the same species (ab-clone). Neutrality, as defined by Hubbell, means that all species have

the same per capita probability of birth (peripheral division) and death. When considering the

model, we ignore the very small chance that an existing ab-clone is produced again by the thymus.

Hence, in our simulations we assume that the thymus produces T-cell clones that are unique and

novel.

Consider a pool of N naive T cells belonging to clones, each consisting of i cells, which changes

by thymic production, cell division and cells leaving the naive pool (as a result of cell death or activa-

tion). During each event, one randomly selected cell exits the pool, causing the corresponding clone

to decrease in size from i to i� 1 cells. With probability 1� �, another randomly selected cell will

divide, causing the corresponding clone to increase its size from i to iþ 1 cells. Alternatively, with

probability �, thymic production can occur: every c events in which no peripheral division occurred,

the thymus will release c cells of a newly produced clone. So, the pool size N only fluctuates by c

cells, and because N � c, the total number of cells stays almost constant during the entire simula-

tion. The per capita birth rate (ð1� �Þ=N) and death rate (1=N) are equal for all T-cell clones, which

makes this a neutral model. In this discrete-time model, exit and production are coupled, but its

dynamics can be approximated by a continuous-time model, in which thymic production, cell divi-

sion, and deaths are uncoupled Poisson processes. This is illustrated by the Markov
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chain depicted in Figure 7, in which the states are clone sizes and the rates show the probabilities of

clones moving to another state.

This Markov process describes the dynamics of the clone-size distribution F, that is the total num-

ber of clones Fi consisting of i cells. After many birth and death events, individual clones still change

in clone size over time, but the clone-size distribution approaches equilibrium. At this steady state,

the rate at which new clones enter the naive pool, �=c, equals the rate at which clones leave the

pool, that is F1ð1=NÞ. Hence, in equilibrium, the number of singletons, clones with only one cell,

approaches F1 ¼ �N=c. The total rate at which the cells of clones with i cells divide and die depends

on the total number of cells belonging to Fi clones: iFi. For clone sizes up to c cells, the rate at which

the cells of the Fi clones die, (iFi=N), balances the division the cells of Fi�1 clones

(ði� 1ÞFi�1ð1� �Þ=N) and the rate at which new clones enter the pool (�=c). The analytical solution to

this recurrence relation iFi=N ¼ ði� 1ÞFi�1ð1� �Þ=N þ �=c is:

Fi ¼
N�Nð1� �Þi

ic
; for 1� i� c : (2)

For states with i>c, only birth and death of cells need to balance between states i� 1 and i (as

there is no net flux from clones introduced by the thymus): iFi=N ¼ ði� 1ÞFi�1ð1� �Þ=N. This recur-

rence relation has the following analytical solution:

Fi ¼
cFcð1� �Þi�c

i
; for c� i�N : (3)

When predicting the full clone-size distribution, we use Equations 2 and 3 to calculate the

steady-state distribution. The total number of all distinct clones (i.e. the richness) in the steady-state

repertoire is simply the sum over all their frequencies Fi, R¼
P

¥

i¼1
Fi, which has a simple closed-form

solution for c¼ 1,

R¼
X

¥

i¼1

Fi ¼
�N ln�

�� 1
for c¼ 1 : (4)

The Simpson’s diversity of the steady state repertoire also has a simple form,

S¼ 1=
X

¥

i¼1

Fi

i

N

� �2

¼
2�N

2þðc� 1Þ�
; (5)

which equals F1 ¼ �N for c¼ 1, and is a saturated function of � if c>1.

We consider the sampling process of a small fraction s from a naive T-cell pool of N cells, which

clones follow the distribution F in Equation 2 and Equation 3. Assuming the naive pool is large and

well-mixed, the number of T cells, X, sampled from the j cells belonging to a particular clone, can be

approximately represented by a binomial random variable, Xj ~B n ¼ j; p ¼ sð Þ. The expected clone-

size distribution of the sample, F̂, is then given by

F̂i ¼
X

N

j¼i

FjPðXj ¼ iÞ : (6)

The strong distortion of sampling from clone-size distributions can be illustrated using the analyti-

cal solution of Equation 6 for the neutral model for c¼ 1:

F̂i ¼ Fi

s

sþð1� sÞ�

� �i

: (7)

Since s is typically very small, this equation can be simplified to F̂i »Fið
s
�Þ

i (as s� �), which clearly

shows that even very abundant clones will become rare or absent in a small sample.

Clone-size distributions of the naive T-cell pools
Since our data contains separate data on both CD4+ and CD8+ T cells, we predicted the clone-size

distributions of both subsets separately. To account for the larger CD4+ pool (Wertheimer et al.,
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2014; Westera et al., 2015), we set its pool size N ¼ 7:5�10
10 cells, while we used N ¼ 2:5�10

10 for

the naive CD8+ pool.

When analyzing the neutral model, we used its steady-state distribution (Equation 2 and Equa-

tion 3). Since the b chain rearranges first, followed by a few divisions before rearrangement of the a

chain (Gonçalves et al., 2017), we use c ¼ 100 for TCRb and c ¼ 10 for TCRa. We also used various

phenomenological clone-size distributions that are not based on a mechanistic model. To allow for

exploration of a wide range of distributions, we chose mathematical functions which form can be

changed by a single parameter, such as the slope of the power-law distribution.

The power-law distribution with form Fi ¼ F1 � i�k shows a straight line on a log-log plot. Since

all Fi are written as a function of F1, the total number of cells

N ¼ F1ð1þ 2� 2
�k þ 3� 3

�k þ :::Þ ¼ F1

P

¥

i¼1
i1�k. This sum is convergent for k>2 and gives

Fi ¼
Ni�k

zðk� 1Þ
; for k>2 (8)

for the power-law clone-size distribution, in which z is the Riemann zeta function.

We also studied repertoires with log-normal distributions of clone-sizes by drawing from a normal

distribution and raising 10 to the power of these numbers for clone sizes. For this we used varying m

and s ¼ �=10. These distributions yielded results that were qualitatively similar to those from the

neutral model (not shown). For the simple mixture model (Figure 4E), we defined two populations

of clones: (1) singletons (clones of just one cell that can only contribute to high TCRa or TCRb abun-

dances by sharing a chain with many other clones) and (2) large clones of equal size. We varied the

fractions of both populations as well as the size of the large clones to find which fraction of the cells

in the naive repertoire is expected to belong to large clones. A similar analysis, combining the afore-

mentioned distribution following from the neutral model with a log-normal distribution for the popu-

lation of large clones, produced very similar results (not shown).

In silico samples from modelled clone-size distributions
To compare the clone-size distributions with the HTS data of the blood samples, we generated

TCRa and TCRb repertoires using IGoR (Marcou et al., 2018). We generated 108 TCRa and TCRb

sequences using IGoR’s default recombination model and parameters. We selected the rearrange-

ments which CDR3 nucleotide sequence consisted of a multiple of 3 nucleotides (in frame) and did

not contain in-frame stop codons, in line with the inclusion criteria of productive rearrangements in

our HTS samples (~28%). Next, we calculated generation probabilities PðsÞ for all these rearrange-

ments. This may seem a detour, but this is needed as many different scenarios can lead to the same

TCRa or TCRb rearrangement.

Only a small percentage of thymocytes that undergo rearrangements in the thymus will eventually

be exported as a naive T cell. This is due to out-of-frame rearrangements, but also as a result of

both positive and negative selection. Moreover, the generation probability distributions of pre- and

post-selection TCRa and TCRb repertoires are markedly different (Elhanati et al., 2014). To account

for these observations, we train a PðsÞ-dependent selection model to account for the effects of thy-

mic selection on our IGoR-produced TCRa and TCRb sequences. Note that this selection method is

Figure 7. Markov chain representation of the neutral model with thymic introduction size c.
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based on single chains rather than on ab-TCRs. This is because recombination of b and a chains

occurs at different points in T-cell differentiation. The first step in selection, after formation of the

b chain, is based on correct folding and expression, using a pre-a pseudochain for pairing. If the T

cell survives this step, it undergoes multiple rounds of divisions, by which its b chain can pair with

many different a chains. The second step is positive and negative selection based on MHC-peptide

interactions, which is likely to operate on a joint ab pair. It is unknown how much each of these two

steps contributes to the overall selection process.

For TCRb selection, we reason that selection on pairing with the invariant pre-a chain acts exclu-

sively on the level of single b chains, and once the T cell survives this first step, it is expected to sur-

vive with at least one of the many a chains it can pair with during the second step. The absence of

strong structural constraints on ab pairing supports this idea (Tanno et al., 2020). Additionally, the

large PðsÞ shift between pre- and post-selection TCRb repertoires is indicative of selection acting on

the level of single b chains (i.e., the probability for a b chain to be selected is largely irrespective of

the a chain). For a chains this shift is less pronounced, and a newly generated a chain only pairs with

a single b chain. We therefore also tested the effect of an alternative selection model in which a

given a chain survives selection with a given probability for repeated production events, reflecting

different selection outcomes when pairing with different b chains. This approach decreases the aver-

age frequency of a chains in the post-selection repertoire (since in this case they will on average sur-

vive only in a fraction of selection events, instead of our default all-or-nothing model). This did not

affect our results in a qualitative manner and we proceeded with selection on the level of single

chains for both TCRa and TCRb.

We use each of the HTS data sets from the single sample experiment (shown in Figure 1) to cal-

culate the relative enrichment or depletion of 100 log10 PðsÞ bins (ranging from �50 to 0) com-

pared to 100 equally sized samples of the IGoR output, for TCRa and TCRb separately. If the HTS

data contained few rearrangements for a given bin, we joined adjacent bins in such a way that the

bin-specific selection factor was always based on at least 1% of the experimental observations (Fig-

ure 8). This approach yielded PðsÞ-specific selection factors fPðsÞ ranging from 0.6 to 1.15 (i.e., our

data suggests that sequences with a preferable PðsÞ are about 2 times as likely to be selected as

those in the least preferable PðsÞ domain). We assumed an overall selection factor of 1/3, meaning

that one out of 3 productive TCRa or TCRb rearrangements would survive selection. We then

allowed sequences to be part of the post-selection repertoire with probability
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Figure 8. Pre- and post-selection PðsÞ densities and PðsÞ-dependent selection factors for a and b chains. (A)

Relative frequency of generation probabilities of TCRa (red) and TCRb (blue) sequences in the combined HTS data

(solid) and IGoR output (dashed). (B) The bin-specific selection factors fPðsÞ are determined by division of the

density of a given bin in the HTS data by the density in the pre-selection IGoR output. A value of 1 means that a

sequence with this PðsÞ has an average probability to be selected in the thymus, whereas lower values indicate

stronger selection and higher values weaker selection (i.e., a higher probability to pass selection).
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pselected ¼ fPðsÞ=3 (9)

and stored the outcome to make a consistent decision when multiple copies of the same TCRa or

TCRb sequence were present in the pre-selection repertoire. This approach yielded post-selection

repertoires with PðsÞ distributions similar to the single sample HTS data. Other values for the overall

selection probability, ranging from 1/10 to 1, were also tested, but yielded similar qualitative results

(not shown).

We could have assigned all clones in the clone-size distribution an a and b chain with this

approach. However, since only a very small part of the repertoire is sampled, we chose to only assign

an identity to those clones present in the samples. Hence, we started with predicting the presence

of all clones, as a function of their size, in each of the samples. The probability that a clone with i

cells is represented by at least one cell in a sample of n cells from a pool of N cells is

pi ¼ 1�ð1�
i

N
Þn (10)

Given Fi, which is the number of clones in the pool with clone size i, the number of these clones

present in the sample of n cells can be approximately represented by a binomial random variable,

Xi ~Bðn¼ Fi;p¼ piÞ. We evaluate this for the entire clone-size distribution F. N and F are known from

the model but one cannot directly determine the number of sampled cells n. This is because individ-

ual cells may contribute multiple mRNA molecules and many cells may have been present in the

FACS-sorted sample without contributing mRNA to the eventual sequenced fraction. Therefore we

learn the sample size by assigning a or b to sampled clones and choosing n such that the predicted

diversity (i.e., number of distinct chains) matches the experimental observations. We took the num-

ber of distinct TCRa or TCRb sequences as lower bound for the sample size, since in this model indi-

vidual cells are assumed to express one functional a or b chain. The total number of cells reported

by the FACS-sorter was used as upper bound. We also checked the implications of the observation

that some T cells contain two functional a and/or b chains, but this did not qualitatively change our

results (not shown).

Thus, we adjusted the generation probability distribution by training a PðsÞ-dependent selection

model on independent HTS data and based the sample size on the corresponding subsamples.

Hence, the predicted individual subsamples reflect the experimental observations in terms of diver-

sity and generation probabilities. We use the chains occurring in multiple samples (i.e., those with

incidence 2 and 3) to assess the agreement between model predictions and the HTS data. We

repeated the sampling process and assignment of a and b chains 10 times for each model-parame-

ter combination to account for the stochastic nature of sampling and V(D)J recombination.
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